
contributed articles

126 COMMUNICATIONS OF THE ACM | JANUARY 2010 | VOL. 53 | NO. 1

DOI: 10.1145/1629175.1629206

BY RANDAL BURNS AND ZACHARY PETERSON

IN RESPONSE TO A GROWING BODY OF ELECTRONIC RECORDS

legislation, the storage community has enhanced
data stores to include privacy, auditability, and a
“chain-of-custody” for data. There are currently over
4,000 federal, state, and local regulations that govern
the storage, management, and retrieval of electronic
records. Most notably, the Sarbanes-Oxley Act of 2002,
which regulates corporate financial records. Storage
vendors provide “compliance” platforms that store
and manage data in accordance with regulations,
which aids customers in meeting compliance
guidelines. Examples include: EMC Centera
Compliance Edition,™ NetApp SnapLock,™ and IBM
Tivoli Security Compliance Manage.™

Many of these platforms add storage management
policy to existing systems. Vendors start with systems
that manage versions of files or volumes. They add
immutability to past versions by preventing writes by
policy. They also enforce data retention guidelines by
not allowing the deletion of protected files. Enhanced

metadata allows users and auditors to ex-
amine the store at any point-in-time and
investigate the manner in which data
have changed throughout their history.

While these features aid organiza-
tions in complying with regulations,
they do not provide strong evidence of
compliance. By following storage man-
agement policies, data are versioned
and retained for mandated periods.
However, there are many opportuni-
ties and motivations to subvert such
storage policies. In fact, the file sys-
tem owner represents the most likely
attacker. For example, a corporation
might alter or destroy data after the
corporation comes under suspicion of
malfeasance. The shredding of Enron
audit documents at Arthur Anderson in
2001 provides a notable paper analog.
Similarly, a hospital or private medi-
cal practice might attempt to amend
or delete a patient’s medical records to
hide evidence of malpractice. In policy-
based storage systems, past data may
be altered or destroyed by reverse engi-
neering file system formats and editing
the file data on disk–a common and
well understood data forensics task.

We assert that these features need
to be cryptographically strong, provid-
ing irrefutable evidence of compliance
with regulations. This can be achieved
for data retention and chain of custo-
dy. A storage system commits to a ver-
sion history so that, at a later time, an
auditor may access past data and gain
conclusive evidence that the data have
been retained and are unmodified.
Further, all data should be bound to
the users that modify, create, or delete
that data. Such constructs improve the
evidentiary value of electronic records
within the courts, increase an auditor’s
confidence in the veracity of the infor-
mation on which they report (and for
which they are responsible), and en-
hance an organization’s quality of data
management.

To these ends, we review three securi-
ty constructs for versioning file systems.
Digital audit trails allow a file system to
prove to an independent auditor that it
stored data in conformance with regu-

Security
Constructs for
Regulatory-
Compliant
Storage

JANUARY 2010 | VOL. 53 | NO. 1 | COMMUNICATIONS OF THE ACM 127

contributed articles

ability of electronic PHI. Additionally,
the covered entity must protect against
reasonable threats as well as protect
against reasonably anticipated misuse
or unauthorized disclosure.

The Sarbanes-Oxley Act of 2002 (SOX)
was enacted in response to the high-
profile Enron and WorldCom financial
scandals and, in its own words, is de-
signed to “protect investors by improv-
ing the accuracy and reliability of corpo-
rate disclosures made pursuant to the
securities laws and for other purposes.”

SOX contains four sections that criti-
cally affect the storage infrastructure of
publicly traded companies. Section 304
requires a company’s CFO and CEO to
personally certify that their electronic
financial records accurately represent
the company’s financial condition.
Section 404 mandates a third-party au-
ditor perform an annual evaluation of a
company’s electronic record manage-
ment procedures. Section 409 necessi-
tates all reporting of electronic records
be done in real-time. Lastly, Section 802
requires companies to produce and
maintain authentic and immutable re-
cords for at least five years.

The requirements of electronic re-
cords legislation are broad, complex,
and often ambiguous. The thrust of
major regulations and legislation is to
protect the consumer/shareholder/pa-
tient from unwanted privacy invasions
and financial or other damages result-
ing from professional misconduct.

Despite their diversity, many of the
rules share similar language and goals,
allowing them to be distilled into a col-
lection of requirements. In general,
electronic records are required to be
available, confidential, and authentic.
Available means that all versions of
all records must be accessible in real-
time; recovering tape archives from a
warehouse is unacceptable. To meet
availability, organizations use on-line,
versioning stores. This feature anchors
commercial compliance products to-
day. Confidential means protecting data
from unauthorized disclosure and use.
This includes allowing authorized users
to control access to their data, includ-
ing the ability to redact (delete) sensi-
tive information. Authentic means that
data are accurate and modifications to
data are immune to repudiation.

To further complicate the issue, leg-
islation fails to name specific technol-

lated retention guidelines. Fine-grained,
secure deletion allows a system to effi-
ciently delete individual versions of files
to meet confidentiality requirements,
limit liability, and allow data to be re-
dacted. Per-block authenticated encryp-
tion adds authenticity guarantees to the
confidentiality provided by encryption.
We also include a distillation of require-
ments based on a review of relevant leg-
islation and a brief characterization of
the performance impact of these tech-
niques based on their implementation
within the ext3cow file system.

Electronics Records Legislation
An examination of the most significant
legislation – HIPAA and SOX – reveals a
large number of requirements that af-
fect storage system architecture. There
are a multitude of other important reg-
ulations that we do not review, and we
note that the issue of electronic records
management goes beyond health-care
and financial records. It covers con-
sumer privacy by the Gramm-Leach-
Bliley Act of 1999 and government
records by the Federal Information
Security Management Act of 2002. In-
deed, these issues are international,
e.g. the European Union has enacted
regulations on the protection of per-
sonal data, Regulation (EC) 45/2001,
and are actively working on regulations
for Corporate Governance.

The Health Insurance Portability
and Accountability Act (HIPAA), enact-
ed in 1996, was intended to improve
the efficiency and effectiveness of the
health care system by allowing an in-
dividual’s medical information to be
transferred easily between insurers. As
part of the Act, legislators addressed
the privacy and security implications
of sharing sensitive patient data, lead-
ing to the development of standards
for electronic health records. HIPAA
includes two provisions that address
the security and privacy of “protected
health information” (PHI). The Privacy
Rule addresses the use and disclosure
of PHI by requiring “covered entities”
(health care providers, insurance com-
panies, and individual physicians) to
implement access control and error
correction procedures, allowing an in-
dividual to manage how their personal
information can be used. The Security
Rule requires a covered entity to ensure
the confidentiality, integrity, and avail-

ogies that a company may implement
to stay compliant. This is intentional.
Binding laws to a particular technology
is unnecessarily limiting and may un-
dermine the effectiveness of those laws
as technologies change.

Security Constructs
for Compliance
We present three technologies that en-
hance storage systems to better meet
the requirements put forth in compli-
ance legislation. While it may be pos-
sible to be “compliant” without using
these technologies, our techniques for
digital audits, secure deletion, and au-
thenticated encryption allow an orga-
nization to make a stronger statement
of compliance, providing irrefutable
evidence of the same. In the future,
were these technologies to become
widely deployed as best practices, it
may no longer be possible to be com-
pliant without them.

Secure-Digital Audit Trails. A digi-
tal audit parallels paper audits in pro-
cess and incentives. The digital audit
is a formal assessment of an organiza-
tion’s compliance with data retention
regulations. It verifies that data have
been retained, have not been modified,
and are accessible within the file sys-
tem. During a failed audit, an auditor
can determine the files that have been
altered, deleted, or added, but can-
not determine their original content,
such as the data that were in deleted
files. Despite this limitation, the audit
process has proven itself in the paper
world and offers the same benefits for
electronic records. The penalties for
failing an audit include fines, impris-
onment, and civil liability, as specified
by legislation.

To implement a digital audit, a
system stores a small piece of crypto-
graphic information at a third party.
This information is the output of a
keyed cryptographic hash function, or
message authentication code (MAC),
used to verify the integrity and authen-
ticity of a file’s contents. A MAC allows
a verifier to detect any changes to the
file’s content and to identify the user
that modified the file. When a file sys-
tem presents a MAC to the third party,
it commits to that version. At a later
time, a version may be verified by an
auditor; the file system is challenged
to produce the data that matches the

contributed articles

128 COMMUNICATIONS OF THE ACM | JANUARY 2010 | VOL. 53 | NO. 1

stored MAC. In addition to verifying
the integrity of a single version’s data,
the MAC binds that version to all previ-
ous versions of the file, authenticating
an entire version history (sequence of
changes to a file). This is accomplished
by combining the result of a previous
MAC in the calculation of the current
MAC using hash chaining.5 Participat-
ing in the audit process reveals nothing
about the contents of data. Thus, we
consider audit models in which orga-
nizations maintain private file systems
and publish secure MACs of file data to
third parties.

Calculating MACs can be an expen-
sive proposition for a file system with
many changing files. This is due to the
serial nature of most MAC implemen-
tations, such as the keyed-hash mes-
sage authentication code (HMAC). All
file data must be present in memory to
calculate an HMAC. Since only small
portions of files may be accessed and
modified, a serial MAC requires addi-
tional I/O to bring all data into cache
memory from disk. In our system,6 we
employ incrementally calculable MACs
based on XOR message authentication
codes (XOR MAC).1 By using the XOR
MAC, we construct the MAC for the new
version based on the data within the
changed blocks only. Figure 1 shows
this process when a file has only one
block changed (C " C’). A serial MAC,
such as an HMAC, requires the whole
file (A,B,C’,D) as its input and often
needs to go to disk to obtain unwritten
portions (A,B,D): a costly operation ex-
acerbated by the non-contiguity of file
blocks on disk. In contrast, the changed
blocks(C,C’) are always in cache and,

thus, require no additional I/O.
Incremental authentication also pro-

vides network bandwidth and storage
benefits for the third party by not requir-
ing all MACs for a file to be published. A
version history to a file may be audited
based on any two published MACs. The
auditor starts with the first version and
computes MACs for each subsequent
version in turn until it computes the
last MAC. Due to the properties of hash
chaining, when the first and last MAC
match, all versions within the history
are valid, including those for which no
authentication data was stored. This en-
sures that no versions have been added,
removed, or modified.

Secure Deletion. The preferred
method for non-destructive secure de-
letion is to repeatedly overwrite data so
that the original data may not be recov-
ered.3 Non-destructive means that the
storage media are not damaged and
may be reused. The National Institute
of Standards and Technology has is-
sued guidelines for overwriting (NIST
Special Publication 800-88), making it
a best-practice.

Applying secure deletion to a ver-
sioning environment is a difficult
problem. Repeatedly overwriting the
data is intolerably inefficient. Version-
ing storage relies on copy-on-write in
which the file system allocates new data
blocks only for new or modified data.
Unmodified data are preserved and
shared across versions. Thus, multiple
versions of the same file share much
data in common. Securely overwriting
a shared block in a past version would
erase it from subsequent versions.
To address this, a system would need

to detect data sharing dependencies
among all versions before committing
to a deletion–an expensive operation.
Also, in order for secure overwriting
to be efficient, the data to be removed
should be contiguous on disk. Over-
writing non-contiguous data blocks
requires many seeks by the disk head.
Copy-on-write systems are unable to
keep the blocks of a file contiguous in
all versions. (If one version is contigu-
ous, all other versions with which it
shares data are not).

We have developed techniques that
combine encryption with secure over-
writing so that a large amount of file
data are deleted by overwriting a small
stub.7 In one approach, a stub is the
last 128 bits of the output of an all-or-
nothing (AON) transform8 applied to
a data block. The AON transform en-
crypts the data block, producing an
output that is slightly larger than the
original block, in our case 128 bits
larger. The transform has the property
that all of the output (stub and data)
must be present to decrypt any of the
original data block: the all-or-nothing
property. Thus, a stub reveals nothing
about the contents of data. After a stub
has been securely deleted (by overwrit-
ing), the corresponding block may no
longer be deciphered, even if the adver-
sary later acquires the key. We collect
and store stubs contiguously in a file
system block so that overwriting a 4K
block of stubs deletes the correspond-
ing 1MB of encrypted file data, even if
file data are non-contiguous. Figure 2
shows this process. Overwriting a sin-
gle region of the disk – the stub block
– deletes blocks of the file regardless of

Figure 1: Creating a MAC using serial authentication (HMAC) and incremental authentication (XORMAC).

JANUARY 2010 | VOL. 53 | NO. 1 | COMMUNICATIONS OF THE ACM 129

contributed articles

tem in most Linux distributions. The
wide adoption of ext3 makes it a good
platform for comparison. The version-
ing and security features of ext3cow de-
grade read and write throughput by less
than 5% when compared with ext3.6,7
Ext3cow has a lightweight snapshot/
versioning model that interferes mini-
mally with disk performance. Also,
time spent performing disk I/O domi-
nates the time spent on cryptographic
operations. Thus, performance should
be no obstacle to the adoption of secu-
rity constructs that enhance regulatory
compliance.

Conclusion
Defining the technology underlying a
compliant system is a confusing and
evolving process. Ultimately, whether
an organization is compliant may be
decided in the courts and depends
on vagaries such as best practices by
peer organizations, business process
within the organization, and the orga-
nization’s intent.4 The role of specific
technologies are to support an orga-
nization’s efforts to meet legislative
guidelines.

where they are on disk. In practice, this
increases deletion throughput by over
200 times when compared with the
NIST standard.

Authenticated Encryption. Require-
ments include that personally identifi-
able and other sensitive data must be
kept secure from unauthorized disclo-
sure, be it by accident or malicious at-
tack. A common technique to protect
the confidentiality of electronic infor-
mation is to encrypt it: a transform by
which data are readable by only those
users that hold the appropriate decryp-
tion key. However, encryption alone is
insufficient and fails to meet regulatory
requirements. An attacker may make
undetectable changes to the encrypted
information, even absent the encryp-
tion key. Thus, a user has no assurance
of the integrity or authenticity of de-
crypted data. Data are required to have
integrity, which means that the data as
a whole are complete, valid, and free
from malicious or accidental alteration.
Data are also required to have authen-
ticity, which means that data modifica-
tions are bound to an individual user.

To address these requirements, au-
thentication information should be
generated on every write and verified
on every read. This may be achieved
through authenticated encryption:2 a
single transform that keeps data both
confidential and authentic. Authenti-
cated encryption binds authentication
information to each block of a file,
allowing each block to be encrypted
and authenticated individually. This
benefits read performance, because
authentication information is incre-
mentally calculable; when performing
small reads, the integrity of data can be
verified based on the data read into the
cache alone.

Most file systems do not employ
authenticated encryption because the
encrypted data are larger than the plain-
text data. This is an alignment problem,
not a capacity problem. File systems use
block sizes integral in the size of a disk
sector, so that a file system block fits
exactly into a number of disk sectors.
Authenticated encryption breaks this
relationship, expanding the cipher-text
data by a small amount, leaving lots of
small, unaligned data in each file. The
data expansion mandates the file sys-
tem reorganizes its physical design–a
complex task to be avoided if possible.

However, the extra space for the stor-
age of stubs in secure deletion matches
perfectly the storage demands of data
expansion for authenticated encryp-
tion. In fact, the AON transform we use
for secure deletion is authenticating.
This synergy allows us to use the same
extra data (the stub) for both authenti-
cation and deletion.

Implementation
The technologies we have presented
are implemented and released in the
ext3cow file system, a freely available,
open-source system designed for ver-
sion management in the regulatory en-
vironment. In addition to its security
features, ext3cow provides file version-
ing and file system snapshot, standard
features in compliant storage. It also
implements an intuitive, time-shifting
interface that provides real-time access
to past versions of data.

Based on our implementation, we
have found that both the versioning
and security features of ext3cow de-
grade performance minimally. Ext-
3cow was developed as a versioning
extension to ext3: the standard file sys-

Figure 2: Performing authenticated encryption for secure deletion.

contributed articles

130 COMMUNICATIONS OF THE ACM | JANUARY 2010 | VOL. 53 | NO. 1

Security constructs that provide irre-
futable proof of compliance represent
a major advance. They demonstrate
not only that data management prac-
tices meet the specific requirements of
legislation, but assist in the subjective
evaluation of compliance as well. Or-
ganizations that employ them will be
making best efforts to be compliant,
which has a myriad of benefits includ-
ing lower risk of liability and increased
investor confidence.

References
 1. Bellare, M., Guérin, R., and Rogaway, P. XOR MACs:

New methods for message authentication using finite
pseudorandom functions. In Advances in Cryptology
Lecture Notes in Computer Science, 963, Springer-
Verlag, 15–28, 1995.

 2. Bellare, M., and Namprempre, C. Authenticated
Encryption: Relations among notions and analysis of
the generic composition paradigm. In Advances in
Cryptology. Lecture Notes in Computer Science, 1976,
Springer-Verlag.

 3. Gutmann, P. Secure deletion of data from magnetic
and solid-state memory. In Proceedings of the
USENIX Security Symposium (July 1996), 77–90.

 4. Kahn, R. A., and Blair, B. T. Information Nation Warrior:
Information Management Compliance Boot Camp.
AIIM International, May 2005.

 5. Lamport, L. Password authentication with insecure
communication. Comm. ACM 24, 11 (Nov. 1981),
770–772.

 6. Peterson, Z. N. J., Burns, R., Ateniese, G., and Bono, S.
Design and implementation of verifiable audit trails
for a versioning file system. In Proceedings of the
USENIX Conference on File And Storage Technologies
(Feb. 2007), 93–106.

 7. Peterson, Z. N. J., Burns, R., Herring, J., Stubblefield,
A., and Rubin, A. Secure deletion for a versioning file
system. In Proceedings of the USENIX Conference on
File And Storage Technologies (Dec. 2005), 143–154.

 8. Rivest, R. L. All-or-nothing encryption and the package
transform. In Proceedings of the Fast Software
Encryption Conference (1997), 1267, 210–218. Lecture
Notes in Computer Science.

Randal Burns (randal@cs.jhu.edu) is an Associate
Professor in the Department of Computer Science at
Johns Hopkins University, MD.

Zachary Peterson (zachary@cs.jhu.edu) is a Senior
Analyst for Independent Security Evaluators and an
Assistant Research Scientist at the Johns Hopkins
University, in Baltimore, MD.

© 2010 ACM 0001-0782/10/0100 $10.00

