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IN RESPONSE TO A GROWING BODY OF ELECTRONIC RECORDS 

legislation, the storage community has enhanced 
data stores to include privacy, auditability, and a 
“chain-of-custody” for data. There are currently over 
4,000 federal, state, and local regulations that govern 
the storage, management, and retrieval of electronic 
records. Most notably, the Sarbanes-Oxley Act of 2002, 
which regulates corporate financial records. Storage 
vendors provide “compliance” platforms that store 
and manage data in accordance with regulations, 
which aids customers in meeting compliance 
guidelines. Examples include: EMC Centera 
Compliance Edition,™ NetApp SnapLock,™ and IBM 
Tivoli Security Compliance Manage.™

Many of these platforms add storage management 
policy to existing systems. Vendors start with systems 
that manage versions of files or volumes. They add 
immutability to past versions by preventing writes by 
policy. They also enforce data retention guidelines by 
not allowing the deletion of protected files. Enhanced 

metadata allows users and auditors to ex-
amine the store at any point-in-time and 
investigate the manner in which data 
have changed throughout their history.

While these features aid organiza-
tions in complying with regulations, 
they do not provide strong evidence of 
compliance. By following storage man-
agement policies, data are versioned 
and retained for mandated periods. 
However, there are many opportuni-
ties and motivations to subvert such 
storage policies. In fact, the file sys-
tem owner represents the most likely 
attacker. For example, a corporation 
might alter or destroy data after the 
corporation comes under suspicion of 
malfeasance. The shredding of Enron 
audit documents at Arthur Anderson in 
2001 provides a notable paper analog. 
Similarly, a hospital or private medi-
cal practice might attempt to amend 
or delete a patient’s medical records to 
hide evidence of malpractice. In policy-
based storage systems, past data may 
be altered or destroyed by reverse engi-
neering file system formats and editing 
the file data on disk–a common and 
well understood data forensics task.

We assert that these features need 
to be cryptographically strong, provid-
ing irrefutable evidence of compliance 
with regulations. This can be achieved 
for data retention and chain of custo-
dy. A storage system commits to a ver-
sion history so that, at a later time, an 
auditor may access past data and gain 
conclusive evidence that the data have 
been retained and are unmodified. 
Further, all data should be bound to 
the users that modify, create, or delete 
that data. Such constructs improve the 
evidentiary value of electronic records 
within the courts, increase an auditor’s 
confidence in the veracity of the infor-
mation on which they report (and for 
which they are responsible), and en-
hance an organization’s quality of data 
management.

To these ends, we review three securi-
ty constructs for versioning file systems. 
Digital audit trails allow a file system to 
prove to an independent auditor that it 
stored data in conformance with regu-
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ability of electronic PHI. Additionally, 
the covered entity must protect against 
reasonable threats as well as protect 
against reasonably anticipated misuse 
or unauthorized disclosure.

The Sarbanes-Oxley Act of 2002 (SOX) 
was enacted in response to the high-
profile Enron and WorldCom financial 
scandals and, in its own words, is de-
signed to “protect investors by improv-
ing the accuracy and reliability of corpo-
rate disclosures made pursuant to the 
securities laws and for other purposes.”

SOX contains four sections that criti-
cally affect the storage infrastructure of 
publicly traded companies. Section 304 
requires a company’s CFO and CEO to 
personally certify that their electronic 
financial records accurately represent 
the company’s financial condition. 
Section 404 mandates a third-party au-
ditor perform an annual evaluation of a 
company’s electronic record manage-
ment procedures. Section 409 necessi-
tates all reporting of electronic records 
be done in real-time. Lastly, Section 802 
requires companies to produce and 
maintain authentic and immutable re-
cords for at least five years.

The requirements of electronic re-
cords legislation are broad, complex, 
and often ambiguous. The thrust of 
major regulations and legislation is to 
protect the consumer/shareholder/pa-
tient from unwanted privacy invasions 
and financial or other damages result-
ing from professional misconduct. 

Despite their diversity, many of the 
rules share similar language and goals, 
allowing them to be distilled into a col-
lection of requirements. In general, 
electronic records are required to be 
available, confidential, and authentic. 
Available means that all versions of 
all records must be accessible in real-
time; recovering tape archives from a 
warehouse is unacceptable. To meet 
availability, organizations use on-line, 
versioning stores. This feature anchors 
commercial compliance products to-
day. Confidential means protecting data 
from unauthorized disclosure and use. 
This includes allowing authorized users 
to control access to their data, includ-
ing the ability to redact (delete) sensi-
tive information. Authentic means that 
data are accurate and modifications to 
data are immune to repudiation.

To further complicate the issue, leg-
islation fails to name specific technol-

lated retention guidelines. Fine-grained, 
secure deletion allows a system to effi-
ciently delete individual versions of files 
to meet confidentiality requirements, 
limit liability, and allow data to be re-
dacted. Per-block authenticated encryp-
tion adds authenticity guarantees to the 
confidentiality provided by encryption. 
We also include a distillation of require-
ments based on a review of relevant leg-
islation and a brief characterization of 
the performance impact of these tech-
niques based on their implementation 
within the ext3cow file system.

Electronics Records Legislation
An examination of the most significant 
legislation – HIPAA and SOX – reveals a 
large number of requirements that af-
fect storage system architecture. There 
are a multitude of other important reg-
ulations that we do not review, and we 
note that the issue of electronic records 
management goes beyond health-care 
and financial records. It covers con-
sumer privacy by the Gramm-Leach-
Bliley Act of 1999 and government 
records by the Federal Information 
Security Management Act of 2002. In-
deed, these issues are international, 
e.g. the European Union has enacted 
regulations on the protection of per-
sonal data, Regulation (EC) 45/2001, 
and are actively working on regulations 
for Corporate Governance.

The Health Insurance Portability 
and Accountability Act (HIPAA), enact-
ed in 1996, was intended to improve 
the efficiency and effectiveness of the 
health care system by allowing an in-
dividual’s medical information to be 
transferred easily between insurers. As 
part of the Act, legislators addressed 
the privacy and security implications 
of sharing sensitive patient data, lead-
ing to the development of standards 
for electronic health records. HIPAA 
includes two provisions that address 
the security and privacy of “protected 
health information” (PHI). The Privacy 
Rule addresses the use and disclosure 
of PHI by requiring “covered entities” 
(health care providers, insurance com-
panies, and individual physicians) to 
implement access control and error 
correction procedures, allowing an in-
dividual to manage how their personal 
information can be used. The Security 
Rule requires a covered entity to ensure 
the confidentiality, integrity, and avail-

ogies that a company may implement 
to stay compliant. This is intentional. 
Binding laws to a particular technology 
is unnecessarily limiting and may un-
dermine the effectiveness of those laws 
as technologies change.

Security Constructs  
for Compliance
We present three technologies that en-
hance storage systems to better meet 
the requirements put forth in compli-
ance legislation. While it may be pos-
sible to be “compliant” without using 
these technologies, our techniques for 
digital audits, secure deletion, and au-
thenticated encryption allow an orga-
nization to make a stronger statement 
of compliance, providing irrefutable 
evidence of the same. In the future, 
were these technologies to become 
widely deployed as best practices, it 
may no longer be possible to be com-
pliant without them.

Secure-Digital Audit Trails. A digi-
tal audit parallels paper audits in pro-
cess and incentives. The digital audit 
is a formal assessment of an organiza-
tion’s compliance with data retention 
regulations. It verifies that data have 
been retained, have not been modified, 
and are accessible within the file sys-
tem. During a failed audit, an auditor 
can determine the files that have been 
altered, deleted, or added, but can-
not determine their original content, 
such as the data that were in deleted 
files. Despite this limitation, the audit 
process has proven itself in the paper 
world and offers the same benefits for 
electronic records. The penalties for 
failing an audit include fines, impris-
onment, and civil liability, as specified 
by legislation.

To implement a digital audit, a 
system stores a small piece of crypto-
graphic information at a third party. 
This information is the output of a 
keyed cryptographic hash function, or 
message authentication code (MAC), 
used to verify the integrity and authen-
ticity of a file’s contents. A MAC allows 
a verifier to detect any changes to the 
file’s content and to identify the user 
that modified the file. When a file sys-
tem presents a MAC to the third party, 
it commits to that version. At a later 
time, a version may be verified by an 
auditor; the file system is challenged 
to produce the data that matches the 
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stored MAC. In addition to verifying 
the integrity of a single version’s data, 
the MAC binds that version to all previ-
ous versions of the file, authenticating 
an entire version history (sequence of 
changes to a file). This is accomplished 
by combining the result of a previous 
MAC in the calculation of the current 
MAC using hash chaining.5 Participat-
ing in the audit process reveals nothing 
about the contents of data. Thus, we 
consider audit models in which orga-
nizations maintain private file systems 
and publish secure MACs of file data to 
third parties.

Calculating MACs can be an expen-
sive proposition for a file system with 
many changing files. This is due to the 
serial nature of most MAC implemen-
tations, such as the keyed-hash mes-
sage authentication code (HMAC). All 
file data must be present in memory to 
calculate an HMAC. Since only small 
portions of files may be accessed and 
modified, a serial MAC requires addi-
tional I/O to bring all data into cache 
memory from disk. In our system,6 we 
employ incrementally calculable MACs 
based on XOR message authentication 
codes (XOR MAC).1 By using the XOR 
MAC, we construct the MAC for the new 
version based on the data within the 
changed blocks only. Figure 1 shows 
this process when a file has only one 
block changed (C " C’). A serial MAC, 
such as an HMAC, requires the whole 
file (A,B,C’,D) as its input and often 
needs to go to disk to obtain unwritten 
portions (A,B,D): a costly operation ex-
acerbated by the non-contiguity of file 
blocks on disk. In contrast, the changed 
blocks(C,C’) are always in cache and, 

thus, require no additional I/O.
Incremental authentication also pro-

vides network bandwidth and storage 
benefits for the third party by not requir-
ing all MACs for a file to be published. A 
version history to a file may be audited 
based on any two published MACs. The 
auditor starts with the first version and 
computes MACs for each subsequent 
version in turn until it computes the 
last MAC. Due to the properties of hash 
chaining, when the first and last MAC 
match, all versions within the history 
are valid, including those for which no 
authentication data was stored. This en-
sures that no versions have been added, 
removed, or modified.

Secure Deletion. The preferred 
method for non-destructive secure de-
letion is to repeatedly overwrite data so 
that the original data may not be recov-
ered.3 Non-destructive means that the 
storage media are not damaged and 
may be reused. The National Institute 
of Standards and Technology has is-
sued guidelines for overwriting (NIST 
Special Publication 800-88), making it 
a best-practice. 

Applying secure deletion to a ver-
sioning environment is a difficult 
problem. Repeatedly overwriting the 
data is intolerably inefficient. Version-
ing storage relies on copy-on-write in 
which the file system allocates new data 
blocks only for new or modified data. 
Unmodified data are preserved and 
shared across versions. Thus, multiple 
versions of the same file share much 
data in common. Securely overwriting 
a shared block in a past version would 
erase it from subsequent versions. 
To address this, a system would need 

to detect data sharing dependencies 
among all versions before committing 
to a deletion–an expensive operation. 
Also, in order for secure overwriting 
to be efficient, the data to be removed 
should be contiguous on disk. Over-
writing non-contiguous data blocks 
requires many seeks by the disk head. 
Copy-on-write systems are unable to 
keep the blocks of a file contiguous in 
all versions. (If one version is contigu-
ous, all other versions with which it 
shares data are not).

We have developed techniques that 
combine encryption with secure over-
writing so that a large amount of file 
data are deleted by overwriting a small 
stub.7 In one approach, a stub is the 
last 128 bits of the output of an all-or-
nothing (AON) transform8 applied to 
a data block. The AON transform en-
crypts the data block, producing an 
output that is slightly larger than the 
original block, in our case 128 bits 
larger. The transform has the property 
that all of the output (stub and data) 
must be present to decrypt any of the 
original data block: the all-or-nothing 
property. Thus, a stub reveals nothing 
about the contents of data. After a stub 
has been securely deleted (by overwrit-
ing), the corresponding block may no 
longer be deciphered, even if the adver-
sary later acquires the key. We collect 
and store stubs contiguously in a file 
system block so that overwriting a 4K 
block of stubs deletes the correspond-
ing 1MB of encrypted file data, even if 
file data are non-contiguous. Figure 2 
shows this process. Overwriting a sin-
gle region of the disk – the stub block 
– deletes blocks of the file regardless of 

Figure 1: Creating a MAC using serial authentication (HMAC) and incremental authentication (XORMAC).
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tem in most Linux distributions. The 
wide adoption of ext3 makes it a good 
platform for comparison. The version-
ing and security features of ext3cow de-
grade read and write throughput by less 
than 5% when compared with ext3.6,7 
Ext3cow has a lightweight snapshot/
versioning model that interferes mini-
mally with disk performance. Also, 
time spent performing disk I/O domi-
nates the time spent on cryptographic 
operations. Thus, performance should 
be no obstacle to the adoption of secu-
rity constructs that enhance regulatory 
compliance.

Conclusion
Defining the technology underlying a 
compliant system is a confusing and 
evolving process. Ultimately, whether 
an organization is compliant may be 
decided in the courts and depends 
on vagaries such as best practices by 
peer organizations, business process 
within the organization, and the orga-
nization’s intent.4 The role of specific 
technologies are to support an orga-
nization’s efforts to meet legislative 
guidelines.

where they are on disk. In practice, this 
increases deletion throughput by over 
200 times when compared with the 
NIST standard.

Authenticated Encryption. Require-
ments include that personally identifi-
able and other sensitive data must be 
kept secure from unauthorized disclo-
sure, be it by accident or malicious at-
tack. A common technique to protect 
the confidentiality of electronic infor-
mation is to encrypt it: a transform by 
which data are readable by only those 
users that hold the appropriate decryp-
tion key. However, encryption alone is 
insufficient and fails to meet regulatory 
requirements. An attacker may make 
undetectable changes to the encrypted 
information, even absent the encryp-
tion key. Thus, a user has no assurance 
of the integrity or authenticity of de-
crypted data. Data are required to have 
integrity, which means that the data as 
a whole are complete, valid, and free 
from malicious or accidental alteration. 
Data are also required to have authen-
ticity, which means that data modifica-
tions are bound to an individual user.

To address these requirements, au-
thentication information should be 
generated on every write and verified 
on every read. This may be achieved 
through authenticated encryption:2 a 
single transform that keeps data both 
confidential and authentic. Authenti-
cated encryption binds authentication 
information to each block of a file, 
allowing each block to be encrypted 
and authenticated individually. This 
benefits read performance, because 
authentication information is incre-
mentally calculable; when performing 
small reads, the integrity of data can be 
verified based on the data read into the 
cache alone.

Most file systems do not employ 
authenticated encryption because the 
encrypted data are larger than the plain-
text data. This is an alignment problem, 
not a capacity problem. File systems use 
block sizes integral in the size of a disk 
sector, so that a file system block fits 
exactly into a number of disk sectors. 
Authenticated encryption breaks this 
relationship, expanding the cipher-text 
data by a small amount, leaving lots of 
small, unaligned data in each file. The 
data expansion mandates the file sys-
tem reorganizes its physical design–a 
complex task to be avoided if possible.

However, the extra space for the stor-
age of stubs in secure deletion matches 
perfectly the storage demands of data 
expansion for authenticated encryp-
tion. In fact, the AON transform we use 
for secure deletion is authenticating. 
This synergy allows us to use the same 
extra data (the stub) for both authenti-
cation and deletion.

Implementation
The technologies we have presented 
are implemented and released in the 
ext3cow file system, a freely available, 
open-source system designed for ver-
sion management in the regulatory en-
vironment. In addition to its security 
features, ext3cow provides file version-
ing and file system snapshot, standard 
features in compliant storage. It also 
implements an intuitive, time-shifting 
interface that provides real-time access 
to past versions of data.

Based on our implementation, we 
have found that both the versioning 
and security features of ext3cow de-
grade performance minimally. Ext-
3cow was developed as a versioning 
extension to ext3: the standard file sys-

Figure 2: Performing authenticated encryption for secure deletion.
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Security constructs that provide irre-
futable proof of compliance represent 
a major advance. They demonstrate 
not only that data management prac-
tices meet the specific requirements of 
legislation, but assist in the subjective 
evaluation of compliance as well. Or-
ganizations that employ them will be 
making best efforts to be compliant, 
which has a myriad of benefits includ-
ing lower risk of liability and increased 
investor confidence. 
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