
Verifiable Audit Trails for a Versioning File System

Randal Burns, Zachary Peterson, Giuseppe Ateniese, Stephen Bono
Department of Computer Science

The Johns Hopkins University

ABSTRACT
We present constructs that create, manage, and verify dig-
ital audit trails for versioning file systems. Based upon a
small amount of data published to a third party, a file system
commits to a version history. At a later date, an auditor uses
the published data to verify the contents of the file system at
any point in time. Audit trails create an analog of the paper
audit process for file data, helping to meet the requirements
of electronic record legislation, such as Sarbanes-Oxley. Our
techniques address the I/O and computational efficiency of
generating and verifying audit trails, the aggregation of au-
dit information in directory hierarchies, and constructing
verifiable audit trails in the presence of lost data.

Categories and Subject Descriptors
D.4.3 [Operating Systems]: File Systems Management—
Access methods, Directory Structure; D.2.7 [Software En-
gineering]: Distribution, Maintenance, and Enhancement—
Version control ; K.5.2 [Legal Aspects of Computing]:
Governmental Issues—Regulation; K.6.4 [Management of
Computing and Information Systems]: System Man-
agement—Management Audit

General Terms
Algorithms, Management, Design, Security, Legal Aspects

Keywords
Secure audit, Electronic records, Versioning file systems

1. INTRODUCTION
The advent of Sarbanes-Oxley (SOX) [6] has irrevocably

changed the audit process. SOX mandates the retention of
corporate records and audit information. It also requires
processes and systems for the verification of the same. Es-
sentially, it demands that auditors and companies present
proof of compliance. SOX also specifies that auditors are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
StorageSS’05, November 11, 2005, Alexandria, Virginia, USA.
Copyright 2005 ACM 1-59593-223-X/05/0011 ...$5.00.

responsible for accuracy of the information on which they
report. Auditors are taking measures to ensure the veracity
of the content of their audit. For example, KPMG employs
forensic specialists to investigate the management of infor-
mation by their clients.

Both auditors and companies require strong audit trails
on electronic records; for both parties to prove compliance
and for auditors to ensure the accuracy of the information on
which they report. The provisions of SOX apply equally to
digital systems as they do to paper records. By a “strong”
audit trail, we mean a verifiable, persistent record of how
and when data have changed.

Systems for compliance with electronic records legislation
meet the record retention and metadata requirements for au-
dit trails, but cannot be used for verification. Technologies
such as continuous versioning file systems [26] and temporal
databases may be employed in order to construct and query
a data history; all changes to data are recorded and the sys-
tem provides access to the record through time-oriented file
system interfaces [21] or through a temporal query language
[25]. However, for verification past versions of data must
be immutable; writes modify the current version of a file,
leaving the version history intact.

The digital audit parallels paper audits in process and
incentives. The digital audit is a formal assessment of an
organization’s compliance with legislation. Specifically, ver-
ifying that companies retain data for a mandated period.
The audit process does not ensure the accuracy or authen-
ticity of the data itself, nor does it prevent the destruction
of data. It verifies that data have been retained, have not
been modified, and are accessible within the file system. To
fail a digital audit does not prove wrongdoing. Despite its
limitations, the audit process has proven itself in the paper
world and offers the same benefits for electronic records.
The penalties for failing an audit include fines, imprison-
ment, and civil liability, as specified by the legislation.

We outline a system for verification of version histories
in file systems based on generating message authentication
codes (MACs) for versions and archiving them with a third
party. A file system commits to a version history when it
presents the MAC to the third party. At a later time, a ver-
sion history may be verified by an auditor. The file system
is challenged to produce data that matches the MAC, ensur-
ing that the system’s past data have not been altered. Par-
ticipating in the audit process should reveal nothing about
the contents of data. Thus, we consider audit models in
which organizations maintain private file systems and pub-
lish secure, one-way functions of file data to third parties.

Published data may even be stored publicly.
Our design goals include minimizing the network, com-

putational, and storage resources used in the publication of
data and the audit process. I/O efficiency is the central
challenge. We provide techniques that avoid all disk I/O
when generating audit trails and greatly reduce I/O when
verifying past data, when compared with adapting a hierar-
chy of MACs to versioning systems [10]. We employ parallel
message authentication codes [2, 3, 4] that allow MACs to
be computed incrementally – based only on data that have
changed from the previous version. MAC generation uses
only data written in the cache, avoiding I/O to file blocks
on disk. Sequences of versions may be verified by comput-
ing a MAC for one version and incrementally updating the
MAC for each additional version, performing the minimum
amount of I/O. With incremental computation, a natural
trade-off exists between the amount of data published and
the efficiency of audits. Data may be published less fre-
quently or on file system aggregates (from blocks into files,
files into directories, etc.) at the expense of verifying more
data during an audit.

Other technical contributions include a construct for build-
ing an audit trail based on hash chaining and constructing
hierarchies of audit information in hierarchical namespaces.
Additionally, to validate version histories in the presence of
failures, we propose the use of approximate MACs [7]. This
allows for a weaker statement of authenticity, but supports
failure-prone storage environments.

2. SECURE DIGITAL AUDITS
A digital audit of a versioning file system is the verifi-

cation of its contents at a specific time in the past. The
audit is a challenge-response protocol between an auditor
and the file system to be audited. To prepare for a future
audit, a filesystem generates authentication metadata that
commits the file system to its present content. This meta-
data are published to a third party. To conduct an audit,
the auditor accesses the metadata from the third party and
then challenges the file system to produce information con-
sistent with that metadata. Using the security constructs
we present, passing an audit establishes that the file system
has preserved the exact data used to generate authentication
metadata in the past. The audit process applies to individ-
ual files, sequences of versions, snapshots of directories and
directory hierarchies, and an entire file system.

Our general approach resembles that of digital signature
and secure timestamp services, e.g. the IETF Time-Stamp
Protocol [1]. From a model standpoint, audit trails extend
such services to apply to aggregates, containers of multiple
files, and to version histories. Such services provide a good
example of systems that minimize data transfer and stor-
age for authentication metadata and reveal nothing about
the content of data prior to audit. We build our system
around message authentication codes, rather than digital
signatures, for computational efficiency.

The publishing process requires long-term storage of au-
thenticating metadata with “fidelity”; the security of the
system depends on storing and returning the same values.
This may be achieved easily with a trusted third party, sim-
ilar to a certificate authority. It may also be accomplished
via publishing to censorship-resistant stores [27].

The principal attack against which this system defends
is the creation of false version histories that pass the audit

process. This class of attack includes the creation of false
versions – file data that matches published metadata, but
differ from the data used in its creation. It also includes the
creation of false histories, undetectably inserting or deleting
versions into a sequence.

In our audit model, the attacker has complete access to the
file system. This includes the ability to modify the contents
of the disk arbitrarily. This threat is realistic. For example,
disk drives may be accessed directly, through the device in-
terface and on-disk structures are easily examined and mod-
ified [9]. In fact, we feel that the most likely attacker is the
owner of the file system. For example, a corporation may
be motivated to alter or destroy data after it comes under
suspicions of malfeasance. The shredding of Enron audit
documents at Arthur Anderson in 2001 provides a notable
paper analog. Similarly, a hospital or private medical prac-
tice might attempt to amend or delete a patient’s medical
records to hide evidence of malpractice. Such records must
be retained in accordance with HIPAA [5].

Obvious methods for securing the file system without a
third party are not promising. Disk encryption provides no
benefit, because the attacker has access to encryption keys.
It is useless to have the file system prevent writes by policy,
because the attacker may modify file system code. Write-
once, read-many (WORM) stores alone are not sufficient,
because the storage contents may be read, modified, and
written to a new WORM device.

Tamper-proof storage devices are a promising technology
for the creation of immutable version histories [18]. They do
not obviate the need for external audit trails, which establish
the existence of changed data with a third party. Tamper-
resistant storage complements audit trails in that it protects
data from destruction or modification. Also, such devices
are likely to be expensive and expense is the major obstacle
to compliance [11].

3. A SECURE VERSION HISTORY
The basic construct underlying digital audit trails is a

message authentication code (MAC) that authenticates the
data of a file version and binds that version to previous
versions of the file. We call this a version authenticator and
compute it on version vi as

Avi
= MACK(vi||Avi−1

); Av0
= MACK(v0, N) (1)

in which K is an authentication key and N is a nonce, de-
rived uniquely from file system metadata. N differentiates
the authenticators for files that contain the same data, in-
cluding empty files. The MAC function must be a univer-
sal one-way hash function [19]. As a corollary, K must be
selected at random by the auditor. (The auditor adds ran-
domness to the generation of K to meet the definition of a
universal one-way hash function.) By including the file data
in the MAC, it authenticates the content of the present ver-
sion. By including the previous version authenticator, we
bind Avi

to a unique version history. This creates a keyed
hash chain coupling past versions of the file. The wide ap-
plication of one-way hash chains in password authentication
[15], micropayments [23], certificate revocation [17], etc. tes-
tifies to their utility and security.

The authentication key binds each MAC to a specific iden-
tity and audit scope. During an audit, the file system reveals
K to the auditor, who may then verify all version histories
authenticated with K. Although K is selected by the audi-

tor, it may be secret until audit. K may be securely derived
from a known identity, e.g. in a public-key infrastructure. In
this case, the key binds the version history to that identity.
A file system may use many keys to limit the scope of an
audit, e.g. to a specific user. For example, Plutus supports
a unique key for each authentication context [13], called a
filegroup. Authentication keys derived from filegroup keys
would allow each filegroup to be audited independently.

A file system commits to a version history by transmit-
ting and storing version authenticators at a third party. The
system relies on the third party to store them persistently
and reproduce them accurately, i.e. return the stored value
keyed by file identifier and version number. It also associates
each stored version authenticator with a secure timestamp
[16]. An audit trail consists of a chain of version authenti-
cators and can be used to verify the manner in which the
file changed over time. We label the published authenticator
Pvi

, corresponding to Avi
computed at the file system.

The audit trail may be used to verify the contents of a sin-
gle version. To audit version vi, an auditor requests file data
vi and the previous version authenticator Avi−1

from the file
system, computes Avi

using Equation 1 and compares this
to the published value Pvi

. The computed and published
identifiers match if and only if the data currently stored by
the file system are identical to the data used to compute
the published value. This process verifies the data content
vi even though Avi−1

is untrusted. We do not require all
version authenticators to be published.

A version history (sequence of changes) to a file may be
audited based on two published version authenticators sep-
arated in time. An auditor accesses two version authentica-
tors Pvi

and Pvj
, i < j. The auditor verifies the individual

version vi with the file system. It then enumerates all ver-
sions vi+1, . . . , vj , computing each version identifier in turn
until it computes Avj

. Again, Avj
matches Pvj

if and only
if the data stored on the file system is identical to the data
used to generate the version identifiers, including all inter-

mediate versions.
Verifying individual versions and version histories relies

upon the collision resistance properties of MACs. For indi-
vidual versions, the auditor uses the untrusted Avi−1

from
the file system, because the MAC authenticates version vi

even when an adversary can choose input Avi−1
. A similar

argument allows a version history to be verified based on
the authenticators of its first and last version. Finding an
alternate version history that matches both endpoints is as
difficult as finding a collision.

Version authenticators may be published infrequently. The
file system may perform many updates without publication
as long as it maintains a local copy of a version authentica-
tor. This creates a natural trade-off between the amount of
space and network bandwidth used by the publishing pro-
cess and the efficiency of verifying version histories.

3.1 Incrementally Calculable MACs
I/O efficiency is the principal concern in the calculation

of version authenticators at the file system. A version of
a file shares data with its predecessor; it differs only the
blocks of data that are changed. As a consequence, the file
system performs I/O only on these changed blocks. For per-
formance reasons, it is imperative that the system updates
audit trails based only on the changed data.

To achieve our efficiency goals, we employ a parallel mes-

0 2 4 6 8 10 12 14 16
0

100

200

300

400

500

600

file size (x 4KB blocks)

tim
e

(m
ic

ro
se

co
nd

s)

XOR−MAC
HMAC

Figure 1: In-memory MAC computation

sage authentication code (PMAC) [2, 3, 4] to compute ver-
sion authenticators. By using the PMAC, we create the
authenticator for the new version using the authenticator of
the predecessor and the data of the changed blocks. We say
that the authenticator is incrementally calculable. In this
way, the effort to compute the authenticator scales with the
size of the changed data, and, thus, with the amount of I/O.
In contrast, a serial MAC requires the whole file to be ex-
amined in the construction of the MAC. A PMAC is a MAC
and, thus, preserves all of its security properties [4].

We use the parallel property of the PMAC to perform
computations separated in time, rather than the original
intended use of separating computation in space. PMAC
computes a one-way function on each block of the input.
Each version vi is divided into blocks bi(0), . . . , bi(n) equal
to the file system block size. To be near consistent with the
original publication [4], for block bi, we label the one-way
function on each block Y (bi). The output of the PMAC is
the exclusive-or of the one-way functions of the input blocks
and the previous version authenticator.

Avi
=

n
O

j=0

Y (bi(j)) ⊗ Y (Avi−1
).

This form is the full computation. There is also an incremen-
tal computation. Assuming that version vi differs from vi−1

in one block only, e.g. bi(j) = bi−1(j), j 6= k; bi(k) 6= bi−1(k),
we observe that

Avi
= Avi−1

⊗Y (bi(k))⊗Y (bi−1(k))⊗Y (Avi−2
)⊗Y (Avi−1

).

This extends trivially to any number of changed blocks. The
updated version authenticator adds the contribution of the
changed blocks and removes the contribution of those blocks
in the previous version. It also updates the past version
authenticator.

To demonstrate the benefit of incremental computation
of MACs, we implemented a parallel MAC algorithm (XOR
MAC [2]) and compare its performance to that of a hash
MAC (HMAC) based on SHA-1. Figure 1 shows that run-
ning time of the algorithms when a single block of data
changes for files of different sizes. Each data point repre-
sents the mean of 5000 trials conducted on a warm cache
(all data in memory). This simple experiment confirms the
known scaling properties of serial and parallel MACs. XOR
MAC has more overhead on small files – 43 ms versus 35 ms

S 4S3S1S

1T 3T2T

3U1U 2U 4U

D2D1

1T 3T 4T2T 5T

3U1U 2U 4UX

2S 3S 4S1S

D2 D3D1

D2
A = MAC(S1

A T2
A U4

A D1
A|| || ||) D3 T5 D2S4

|| ||A = MAC(A A)A

2

Figure 2: Updating directory version authenticators when file U is deleted.

for a single 4K block. However, parallel MAC performance
scales with the amount of data changed: one block in this
case. The performance of HMAC scales with the file size.
This demonstrates the best case speedup for parallel MACs,
when data change minimally between versions. However,
studies of versioning file systems show that data change at
a fine granularity [21, 26].

More importantly, the computation of the updated ver-
sion authenticator may be performed on data available in
the cache, requiring no additional disk I/O. In most cases,
system caches are managed on a page basis, which leaves
portions of any individual file version in memory and por-
tions on the disk. This happens when files are not read in
their entirety or previously read data are evicted from the
cache (more likely with large or long-lived files). When com-
puting a serial MAC for a file, all file data would need to
be accessed, including that on disk. As disk accesses are
a factor of 105 slower than memory accesses, computing a
serial MAC is substantially worse than algorithmic perfor-
mance would indicate. Only in the case of a blind write –
write without reading – to a block not in cache does the
incremental computation of a PMAC result in disk I/O.

3.2 Hierarchies and File Systems
Audit trails must include information about the entire file

system; individual versions are not sufficient. Auditors need
to discover the relationships between files and interrogate
the contents of the file system. Having found a file of interest
in an audit, natural questions include: what other data was
in the same directory at this time? or, did other files in the
system store information on the same topic? The data from
each version must be associated with a coherent view of the
entire file system.

Based on trees of MACs, we provide a construct that binds
individual files to directories and to entire file systems. A
directory version authenticator is a MAC of the version au-
thenticators of its files and sub-directories along with the
directory’s previous version authenticator. Directory ver-
sion authenticators continue recursively to the file system
root, which is bound to the entire file system image. The
SFS-RO system [10] employed a similar technique to fix the
content of a read-only file system with single versions of each
file and directory. Our methods differ from SFS-RO in that
we must account for updates.

For efficiency reasons, we bind directory version authenti-
cators to files (and sub-directories), not to specific versions
of files. Figure 2 shows directory D2 bound to files S, T, U .
This is done by including the authenticators for specific ver-
sions S1, T2, U4 that were current at the time version D2

was created. However, subsequent file versions (e.g. S2, T3)
may be created without updating the directory version au-

thenticator AD2
. Rather, the system updates it only when

the directory’s contents change; i.e. files are created or de-
stroyed.

The directory version authenticator binds the file and all
subsequent versions of that file to the directory. The file (all
versions) are part of the directory until deletion. In this ex-
ample, when deleting file U the authenticator is updated to
the current versions. We update directory version authen-
ticators on file creation as well. Were we to bind directory
version authenticators directly to the content of individual
file versions, they would need to be updated every time that
a file is written. This includes all parent directories recur-
sively to the file system root – an obvious performance con-
cern as it would need to be done on every write.

Updating directory version authenticators creates a time-
space trade-off similar to that of publication frequency (Sec-
tion 3). It is sufficient to update directory version authen-
ticators when files are created or deleted only. However,
updating them more frequently may be desirable to speed
the audit process. During an audit, to verify that a file was
in a directory at a particular point in time, the file must be
included in a directory version authenticator prior to that
point, to prove it existed, and after that point, to establish
that it had not been deleted. Recall that the published his-
tory may not be complete and that the exact deletion time
of a file may be unknown. However, the complete history
may be reconstructed in an audit.

4. RELATED WORK
Most closely related to this work is the SFS-RO system

[10], which provides authenticity and integrity guarantees
for a read-only file system. We follow their model for both
the publication of authentication metadata, replicated to
storage servers, and use similar hierarchical structures. SFS-
RO focuses on reliable and verifiable content distribution; it
does not address writes, multiple versions, or efficient con-
structs for generating MACs.

Recently, there has been some focus on adding integrity
and authenticity to storage systems. Oceanstore creates a
tree of secure hashes against the fragments of a erasure-
coded, distributed block. This detects corruption without
relying on error correction and provides authenticity [28].
Patil et al [20] provide a transparent integrity checking ser-
vice in a stackable file system. The interposed layer con-
structs and verifies secure checksums on data coming to and
from the file system. Haubert et al [12] provide a survey
of tamper-resistant storage techniques and identify security
challenges and technology gaps for multimedia storage sys-
tems.

Schneier and Kelsey describe a system for securing logs

on untrusted machines [24]. It prevents an attacker from
reading past log entries and makes the log impossible to
corrupt without detection. They employ a similar “audit
model” that focuses on the detection of attacks, rather than
prevention. As in our system, future attacks are deterred
by legal or financial consequences. While logs are similar to
version histories, in that they describe a sequence of changes,
the methods in Schneier and Kelsey secure the entire log: all
changes to date. They not authenticate individual changes
(versions) separately.

To our knowledge, no previous research has addressed the
integrity and authenticity of version sequences with each ver-
sion individually verifiable, nor devised constructs to update
MACs incrementally in a file system.

Efforts at cryptographic file systems and disk encryption
are orthogonal to audit trails. Such technologies provide for
the privacy of data and authenticate data coming from the
disk. However, the guarantees they provide do not extend
to a third party and, thus, are not suitable for audit.

5. AVAILABILITY AND SECURITY
A verifiable file system may benefit from accessing only a

portion of the data to establish authenticity. Storage may be
distributed across unreliable sites [8, 14], such that accessing
it in entirety is difficult or impossible. Also, if data from any
portion of the file system are corrupted irreparably, the file
system may still be authenticated, whereas with standard
authentication, altering a single bit of the input data leads
to a verification failure.

To audit incomplete data, we propose to use approximately-
secure and approximately-correct MAC (AMAC) introduced
by Di Crescenzo et al. [7]. The system verifies authenticity
while tolerating a small amount of modification, loss, or cor-
ruption of the original data. The exact level of tolerance can
be tuned.

We parallelize the AMAC construction to adapt it to file
systems; in addition, we propose to use PMAC as building
block in the AMAC construction [7], to allow for incremental
update.

The atom for the computation is a file system block, rather
than a bit. The approximate security and correctness then
refer to the number of corrupted or missing blocks, rather
than bits. We give details of the algorithms for AMAC using
PMAC in the Appendix but we leave a formal treatment of
incremental AMACs for future work.

The chief benefit of using the AMAC construction over
regular MAC constructions lies in verification. Serial and
parallel MACs require the entire message as input to ver-
ify authenticity. Using AMAC, a portion of the original
message can be ignored. This allows a weaker statement
of authenticity to be constructed even when some data are
unavailable. The drawback of AMAC lies in the reduction
of authenticity. With AMAC, some data may be acceptably
modified in the original source.

6. FILE SYSTEM IMPLEMENTATION
We are implementing audit trails in ext3cow [21], an open-

source, block-versioning file system designed to meet the
requirements of electronic record management legislation.
Ext3cow supports file system snapshot, per-file versioning,
and a time-oriented interface. Ext3cow provides the fea-
tures needed for an implementation of audit trails: it sup-

ports continuous versioning, creating a new version on ev-
ery write; and, maintains old and new versions of data and
metadata concurrently for the incremental computation of
version authenticators using parallel MACs.

The ext3cow inode will be expanded to contain a authenti-
cator for each file and directory version. Versions of a file are
implemented by chaining inodes together in which each in-
ode represents a version. The file system traverses the inode
chain to generate a point-in-time view of a file. We have al-
ready retrofitted the metadata structures of ext3cow to sup-
port versioning and secure deletion (based on authenticated
encryption [22]). Version authenticators are a straightfor-
ward extension to file system metadata, because they require
only a few bytes per inode.

Key management in ext3cow uses lockboxes [13] to store
a per-file authentication key, which the system generates
automatically and stores within the inode. The file owner’s
private key unlocks the lockbox and provides access to the
authentication key. Lockboxes are also part of the secure
deletion feature of ext3cow [22].

7. CONCLUSIONS
We have introduced a model for digital audits of ver-

sioning file systems that supports compliance with federally
mandated data retention guidelines. In this model, a file
system commits to a version history when data are created.
This prevents the owner of the file system (or a malicious
party) from modifying past data without detection. Algo-
rithms for conducting audits rely on constructs with prov-
able security. This includes techniques for the generation of
audit metadata in parallel and methods to deal with data
loss or temporary outages. We are currently implementing
these technologies in a continuously versioning file system.

Acknowledgments
This work was supported by the National Science Founda-
tion (awards CCF-0238305 and IIS-0456027), by the De-
partment of Energy, Office of Science (award DE-FG02-
02ER25524), and by the IBM Corporation. We thank Gio-
vanni Di Crescenzo for discussions on the AMAC construc-
tion. We also thank Peter Kimball for providing an imple-
mentation of the XOR MAC function used in Section 3.1.

8. REFERENCES
[1] C. Adams, P. Cain, D. Pinkas, and R. Zuccherato.

IETF RFC 3161 Time-Stamp Protocol (TSP). IETF
Network Working Group, 2001.

[2] M. Bellare, O. Goldreich, and S. Goldwasser.
Incremental cryptography and application to virus
protection. In Proceedings of the 27th ACM

Symposium on the Theory of Computing, 1995.

[3] M. Bellare, R. Guérin, and P. Rogaway. XOR MACs:
New methods for message authentication using finite
pseudorandom functions. In Advances in Cryptology -

Crypto 95 Proceedings, Lecture Notes in Computer

Science, volume 963, pages 15–28. Springer-Verlag,
1995.

[4] J. Black and P. Rogaway. A block-cipher mode of
operation for parallelizable message authentication. In
Advances in Cryptology - Eurocrypt 2002 Proceedings,

Lecture Notes in Computer Science, volume 2332.
Springer-Verlag, 2002.

[5] United States Congress. The Health Insurance
Portability and Accountability Act of 1996, 1996.

[6] United States Congress. Sarbanes-Oxley Act of 2002,
2002.

[7] G. Di Crescenzo, R. Graveman, R. Ge, and G. Arce.
Approximate message authentication and biometric
entity authentication. In Proceedings of Financial

Cryptography and Data Security, 2005.

[8] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and
I. Stoica. Wide-area cooperative storage with CFS. In
Proceedings of the 18th ACM Symposium on Operating

Systems Principles, 2001.

[9] D. Farmer and W. Venema. Forensic Disocvery.
Addison-Wesley, 2004.

[10] K. Fu, M. Frans Kasshoek, and D. Mazières. Fast and
secure distributed read-only file system. ACM

Transactions on Computer Systems, 20(1), 2002.

[11] J. Hagerty. Sarbanes-Oxley compliance spending will
exceed $5B in 2004. AMR Research Outlook, Dec 2004.

[12] E. Haubert, J. Tucek, L. Brumbaugh, and W. Yurcik.
Tamper-resistant storage techniques for multimedia
systems. In International Symposium Electronic

Imaging Storage and Retrieval Methods and

Applications for Multimedia, 2005.

[13] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang,
and K. Fu. Plutus: Scalable secure file sharing on
untrusted storage. In Proceedings of the Conference on

File and Storage Technologies, 2003.

[14] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski,
P. Eaton, D. Geels, R. Gummandi, S. Rhea,
H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao.
OceanStore: An architecture for global-scale
persistent storage. In Proceedings of the Conference on

Architecture Support for Programming Languages and

Operating Systems, 2000.

[15] L. Lamport. Password authentication with insecure
comunication. Communications of the ACM,
24(11):770–772, 1981.

[16] P. Maniatis and M. Baker. Enabling the archival
storage of signed documents. In Proceedings of the

Conference on File and Storage Technologies, 2002.

[17] S. Micali. Efficient certificate revocation. In
Proceedings of RSA and US Patent 5,666,416, 1997.

[18] J. Monroe. Emerging solutions for content storage.
Presentation at PlanetStorage, 2004.

[19] M. Naor and M. Yung. Universal one-way hash
functions and their cryptographic applications. In
Proceedings of the Symposium on Theory of

Computing, 1989.

[20] S. Patil, A. Kashyap, G. Sivathanu, and E. Zadok.
I3FS: An in-kernel integrity checker and intrusion
detection file system. In Proceedings of the Large

Installation System Administration Conference, 2004.

[21] Z. Peterson and R. Burns. Ext3cow: A time-shifting
file system for regulatory compliance. ACM

Transactions on Storage, 1(2):190–212, 2005.

[22] Z. N. J. Peterson, R. Burns, and A. Stubblefield.
Limiting liability in a federally compliant file system.
In Proceedings of the PORTIA Workshop on Sensitive

Data in Medical, Financial, and Content Distribution

Systems, 2004.

[23] R. L. Rivest and A. Shamir. PayWord and MicroMint
– two simple micropayment schemes. Proceedings of

the International Workshop on Security Protocols,

Lecture Notes in Computer Science, Springer,
(1189):69–87, 1997.

[24] B. Schneier and J. Kelsey. Cryptographic support for
secure logs on untrusted machines. In Proceedings of

the USENIX Security Symposium, 1998.

[25] Richard T. Snodgrass, editor. The TSQL2 Temporal

Query Language. Kluwer, 1995.

[26] C. A. N. Soules, G. R. Goodson, J. D. Strunk, and
G. R. Ganger. Metadata efficiency in versioning file
systems. In Proceedings of the Conference on File and

Storage Technologies, March 2003.

[27] M. Waldman, A. D. Rubin, and L. F. Cranor. Publius:
A robust, tamper-evident, censorship-resistant, Web
publishing system. In Proceedings of the USENIX

Security Symposium, 2000.

[28] H. Weatherspoon, C. Wells, and J. Kubiatowicz.
Naming and integrity: Self-verifying data in
peer-to-peer systems. In Proceedings of the Workshop

on Future Directions in Distributed Computing, 2002.

Appendix
The AMAC Construct (see [7]): Let M denote the mes-
sage space where m ∈ M is an instance of a message, let d
represent a distance function computed over M (such as
the hamming distance), and let k represent a secret key. An
approximately-secure and approximately-correct MAC for dis-

tance function d is represented by an authentication tag gen-
eration algorithm Tag(m,k, d) that computes the AMAC
and returns the value tag, and a verification algorithm
Verify(m,k, tag, d) that returns true if and only if
tag =Tag(m,k, d).

An AMAC has (d, p, δ)−approximate-correctness if
tag=Tag(m,k, d), then with probability at least p
Verify(m′, k, tag, d) will return true if d(m,m′) ≤ δ. An
AMAC has (d, γ, t, q, ǫ)−approximate-security if an adver-
sary operating in time t makes q queries to a tag generation
oracle, the probability that the adversary can construct a
message m′ such that d(m,m′) ≥ γ and
Verify(m′, k, tag, d) returns true, is at most ǫ.

Tag and Verify (cf. [7]): To construct an AMAC tag us-
ing the Tag algorithm, perform the following steps. Each
AMAC also takes as input a counter ct that seeds random-
ness in the Tag and Verify algorithms; ct should not be
reused.

1. Set x1 = ⌈n/2cδ⌉, where n is the size of the mes-
sage in bits and c is a pre-specified block size in
bits.

2. Set x2 = ⌈10log(1/(1 − p))⌉.
3. Write π(m ⊕ L) as m1|m2| . . . |m⌈n/c⌉, where L is

a random bit string and π is a random permuta-
tion both unique given the value of ct, and each
mi represents a block of size c of the manipulated
message.

4. Using randomness based on ct, create x2 message
subsets, S1, S2, . . . , Sx2

, where each subset is the
concatenation of x1 randomly chosen blocks mi.

5. For each subset, compute shi = H(Si, k), where

H can be implemented as a secure MAC (formally
it has to be a target collision resistant function)
and k is retrieved from randomness based on the
seed ct.

6. Return as the final tag, ct|sh1|sh2| . . . |shx2
.

The Verify algorithm performs steps 1 through 5 of the
above algorithm on message m′ acquiring sub-tags sh′

1, sh
′
2,

. . . , sh′
x2

. Verify then returns true if and only if shi = sh′
i

for at least αx2 sub tags, where α = 1 − 1/2
√

e − 1/2e.
Constructing and verifying tags allows for the original in-

put to be partially modified, corrupted or even missing for
up to δ bits, and still maintain approximate correctness and
security so long as the underlying function H is a universal
one-way hash function [19].

Update (Incremental AMAC): An AMAC based on a
parallel MAC can be efficiently updated when only a portion
of the original message has changed. The only data needed
is the block being modified.

Our idea is to replace H with a parallel MAC. We are
assuming that it is possible to build a (finite) family of uni-
versal one-way hash functions from the PMAC construction
(or from other deterministic parallel MAC constructions).

The Update algorithm takes as input an original message
block b, a modified message block b′, the position of the
modified block within the original input data source r, and
the authenticator tag being updated ct|sh1| . . . |shx2

.

1. Set x1 = ⌈n/2cδ⌉, where n is the size of the mes-
sage in bits and c is a pre-specified block size in
bits.

2. Set x2 = ⌈10log(1/(1 − p))⌉.
3. Use π(m) to compute the permuted position of the

modified block in the message.

4. Using randomness based on ct, determine the sub-
sets and positions within each subset where block
b is used.

5. Since we are using PMAC, we can efficiently up-
date each sub tag after computing each subset
and position where b is placed. Compute sh′

i =
shi ⊕ Y (b) ⊕ Y (b′), where Y (·) is computed as in
Section 3.1.

6. Return as the updated tag, ct|sh′
1|sh′

2| . . . |sh′
x2

.

Initially computing the authenticator value for a portion
of the file system using AMAC requires the entire input
source to be accessed, just as it would if using a conventional
PMAC algorithm. Computationally there is more work to
be performed when computing each AMAC, but memory
operations are negligible when compared with disk I/O. Up-
dating an incremental AMAC requires the same number of
disk accesses as updating a PMAC.

