
Secure Deletion in a Versioning File System

Zachary N. J. Peterson

Qualifying Project
Computer Science Department
The Johns Hopkins University

Abstract
We present an architecture for the secure deletion of indi-
vidual versions of a file. The principle application of this
technology is federally compliant storage; it is designed to
eliminate data after a mandatory retention period. How-
ever, it applies generally to any storage system that shares
data between files, most notably versioning file systems
and content-indexing archives. We compare two methods
for encrypting and encoding data. We also discuss imple-
mentation issues, such as the demands that secure dele-
tion places on version creation and the composition of file
system metadata.

1 Introduction
Versioning storage systems are increasingly impor-
tant in research and commercial applications. Ver-
sioning has been recently identified by Congress
as mandatory for the maintenance of electronic
records of publicly traded companies (Sarbanes-
Oxley, Gramm-Leach-Bliley), patient medical records
(HIPAA), and federal systems (FISMA).

Existing versioning storage systems overlook
fine-grained, secure deletion as an essential require-
ment. Secure deletion is the act of removing digi-
tal information from a storage system so that it can
never be recovered. Fine-grained refers to removing
individual files or versions of file, while preserving
all other data in the system.

Secure deletion is valuable to security conscious
users and organizations. It protects the privacy of
user data and prevents the discovery of information
on retired or sold computers. We are particularly
interested in using secure deletion to limit liability
in the regulatory environment. By securely deleting
data after they have fallen out of regulatory scope,
e.g. seven years for corporate records in Sarbanes-
Oxley, data cannot be recovered even if disk drives

are produced and encryption keys revealed. Data are
gone forever and corporations are not subject to ex-
posure via subpoena or malicious attack.

Currently, their are no efficient methods for fine-
grained secure deletion in versioning storage sys-
tems. The preferred and accepted methods for secure
deletion in non-versioning systems include: over-
writing data with other data, such that the original
data may not be recovered [6]; and, encrypting a file
with a key and securely disposing of the key to make
the data unrecoverable [3]. These techniques are not
applicable to versioning systems.

Secure overwriting has performance concerns in
versioning systems. In order to limit storage over-
head, versioning systems share blocks of data be-
tween file versions. Securely overwriting a shared
block in a past version could erase it from subse-
quent versions. To address this, a system would need
to detect data sharing dependencies among all ver-
sions before committing to a deletion. Also, in or-
der for secure overwriting to be efficient, the data
to be removed should be contiguous on disk. Non-
contiguous data blocks require many seeks by the
disk head – the most costly disk drive operation. By
their very nature, versioning systems are unable to
keep the blocks of a file contiguous in all versions.

Block sharing also hinders key management in
encrypting systems using key disposal. If a system
were to use an encryption key per version, that key
could not be discarded, as it is needed to decrypt
shared blocks in future versions. To realize fine-
grained secure deletion by key disposal, a system
must keep a key for every shared block.

We have developed two methods for the secure
deletion of individual versions that minimize the
amount of secure overwriting while providing au-
thenticated encryption. Our techniques combine disk

1

encryption with secure overwriting so that a large
amount of file data (any block size) are deleted by
overwriting a small stub of 128 bits. For 4K, blocks,
this is a 256 times speedup. Further, we collect and
store stubs contiguously in a file system block so that
overwriting a 4K block of stubs deletes the corre-
sponding 1 MB of file data, even when file data are
non-contiguous. Unlike encryption keys, stubs are
not secret and may be stored on disk. We are im-
plementing these deletion techniques in the ext3cow
versioning file system, designed for version manage-
ment in the regulatory environment [9].

2 Related Work
Garfinkel and Shelat [5] give a survey of methods to
destroy digital data. They identify secure deletion as
a serious and pressing problem in a society that has
a high turn-over in technology. They cite an increase
in law suits and news reports on unauthorized dis-
closures, which they attribute to a poor understand-
ing of data longevity and a lack of secure deletion
tools. They identify two methods of secure deletion
that leave disk drives in a usable condition: secure
overwriting and encryption.

In secure overwriting, new data are written over
old data so that the old data are irrecoverable. Gut-
mann [6] gives a technique that takes 22 synchronous
passes over the data in order to degauss the mag-
netic media, making the data safe from magnetic
force microscopy. (Fewer passes may be adequate
[5]). This has been implemented in user-space tools
and in a Linux file system [1]. Secure overwriting
has also been applied in semantically-smart disk sys-
tems [13]. However, a large number of synchronous
passes may be prohibitively expensive. Particularly
for versioning systems that fragment file data.

For file systems that encrypt data on disk, data
may be securely deleted by “throwing away” the cor-
responding encryption key [3]; without a key, data
may never be decrypted and read again. This method
works in systems that maintain an encryption key
per file and do not share data between multiple files,
unlike versioning systems and content-sharing stores
[10]. This method greatly reduces the time needed to
delete large amounts of data. The actual disposal of
the encryption key often involves secure overwriting.

3 Secure Deletion with Versions
Secure deletion with versions builds upon authenti-
cated encryption of data on disk. We use a keyed
transform:

fk(Bi,N)→Ci||si

that takes a data block (Bi), a key (k) and a nonce (N)
and creates an output that can be partitioned into a
secure data block (Ci), where |Bi|= |Ci|, and a short
stub (si), whose length is a parameter of the scheme’s
security. In practice, si might be 128 bits. When the
key (k) remains private, the transform acts as a secure
authenticated encryption algorithm [2]. To securely
delete an entire block, only the stub needs to be se-
curely overwritten. This holds even if the adversary
is later given the key (k), e.g. by subpoena. The stub
reveals nothing about the data, and, thus, stubs may
be stored on the same disk. A concept similar to stub
deletion has been used in memory systems [?].

We present and compare two implementations
of the keyed transform: one inspired by the all-or-
nothing transform [4, 11], the other based on ran-
domized keys. We also present extensions, based on
key-sharing, that allow for the control and deletion
of data by multiple parties.

3.1 AON Secure Deletion

The all-or-nothing (AON) transform [4, 11] ensures
that an entire ciphertext, in our case a single file sys-
tem block, must be decrypted before even one mes-
sage block, some subset of the block, is revealed; no
subset may be decrypted in isolation. The original
intention of the AON transform was to increase the
amount of time of a brute-force key search by a fac-
tor equal to the number of blocks in a ciphertext.

The all-or-nothing transform is the most natural
construct for the secure deletion of versions. Our
AON algorithm is presented in Figure 1(a). The al-
gorithm takes a single file system block (d1, . . . ,dm),
and performs encryption (Step 2) with a single file
key, greatly easing key management. The encrypted
data is authenticated (Step 3) and the result is then
used to re-encrypt the data (Step 5). The resulting
stub (Step 6) is not secret, rather, it is an expansion
of the AON encrypted data.

AON encryption also enables the deletion of a
block of data from an entire version chain. Due to
the all-or-nothing properties of AON encryption, the

2

Input: Data d1, . . . ,dm, Block ID id, Counter x,
Encryption key K, MAC key M
1: ctr1← id||x||1||0128−|x|−|id|−1

2: c1, . . . ,cm← AES-CTRctr1
K (d1, . . . ,dm)

3: t ← HMAC-SHA-1M(c1, . . . ,cm)

4: ctr2← id||x||0||0128−|x|−|id|−1

5: x1, . . . ,xm← AES-CTRctr2
t (c1, . . . ,cm)

6: x0← x1⊕ . . .⊕ xm⊕ t
Output: Stub x0, Ciphertext x1, . . . ,xm

(a) Secure deletion using AON encryption

Input: Data d1, . . . ,dm, Block ID id, Counter x,
Encryption key K, MAC key M
1: k

R
← KAE

2: nonce← id||x
3: c1, . . . ,cn← AEnonce

k (d1, . . . ,dm)

4: ctr← id||x||0128−|x|−|id|

5: c0← AES-CTRctr
K (k)

6: t ← HMAC-SHA-1M(ctr,c0)
Output: Stub c0, t,cm+1, . . . ,cn, Ciphertext c1, . . . ,cm

(b) Secure deletion using random key encryption

Figure 1: Two algorithms for authenticated encryption and secure deletion in versioning file systems.

secure overwriting of any 128 bits of a block will
result in that block being securely deleted. This is the
preferred technique for removing an entire version
chain, as many blocks are shared between versions.

Despite these virtues, AON suffers from a known
plain-text attack. After an encryption key has been
revealed, if an attacker can guess the exact contents
of a block of data, the attacker can verify that the
data were once in the file system. This attack does
not reveal encrypted data. Once the key is revealed,
the attacker has all of the inputs to the encryption
algorithm and may reproduce the ciphertext. The ci-
phertext may be compared to the undeleted block of
data, minus the deleted stub, to prove the existence
of the data.

Such a plain-text attack is reasonable within the
threat model of regulatory storage; a key may be
subpoenaed in order to show that the file system
contained specific data at some time. For exam-
ple, to show that a doctor had knowledge of a pa-
tient’s drug allergy in a malpractice case regarding
mis-prescribed drugs.

3.2 Secure Deletion Based on Randomized Keys

To avoid such a plain text attack, systems must em-
ploy randomization, on a per-block basis, so that the
encryption process is not repeatable. An algorithm
for random-key secure deletion is shown in Figure
1(b). The scheme generates a random key, k, in
Step 1 that is used to authenticate and encrypt a data
block. To avoid the complexities of key distribution,
we keep a single key per file, K, as with AON encryp-
tion, and use this key to encrypted the random key
(Step 5). The encrypted randomly-generated key, c0,

serves as the stub. The expansion created by the AE
scheme in Step 3 (cm+1, . . . ,cn) and the authentica-
tion of the encrypted random key (t) need not be se-
curely overwritten to permanently destroy data. The
encryption and storage of keys resembles lock-boxes
in the Plutus file system [7].

The algorithm is built upon any Authenticated
Encryption (AE) scheme (Step 3). This algorithm
is provably secure when the underlying AE scheme
is secure; AES and SHA-1 satisfy standard secu-
rity definitions. An advantage of this transform is
its speed. For example, when the underlying AE is
OCB [12], only one pass over the data is made and it
is fully parallelizable.

Randomized key encryption does not hold all the
advantages of an AON scheme. Only selective com-
ponents may be deleted, i.e. c0. Thus, in order to
delete a block from all versions, the system must
securely overwrite all stub occurrences in a version
chain, as opposed to securely overwriting only 128
bits of a data block in an AON scheme. Additionally,
the algorithm suffers from a larger message expan-
sion: 384 bits per disk block are required instead of
128 required for the AON scheme. We are exploring
other more space-efficient algorithms.

3.3 Secure Deletion with Secret-Sharing

Our random-key encryption scheme allows for the
separation of the randomly-generated encryption key
into key shares. Any number of randomly generated
keys may be created in Step 1 (Figure 1(b)). and
composed to create a single encryption key, k. With
key shares, any single share may be destroyed to se-
curely delete the corresponding data. However, all

3

Stubs

211i_ino

Inode

i_data[0] Data*
Data*

COW Bitmaps

Data Pointers

i_data[10]

i_data[11]

i_data[12]

i_data[13]

i_data[14]

...

Data*
Stubs*

Ind. Data*
Ind. Data*

Indirect Block

Stub Pointers

Figure 2: Metadata architecture to support stubs.

key shares must be present at the time of decryp-
tion. For example, a patient may hold a key share
for their medical records on a smart-card, enabling
them to control access to their records, and also in-
dependently destroy their records without access to
the storage system.

4 Architecture
We are implementing secure deletion in ext3cow [9],
an open-source, block-versioning file system de-
signed to meet the requirements of electronic record
management legislation. Ext3cow supports file sys-
tem snapshot, per-file versioning, and a time-shifting
interface that provides real-time access to past ver-
sions. Versions of a file are implemented by chain-
ing inodes together in which each inode represents a
point-in-time snapshot of a file.

4.1 Metadata for Secure Deletion

Metadata in ext3cow have been retrofitted to sup-
port versioning and secure deletion. For versioning,
ext3cow embeds bitmaps in its inodes and indirect
blocks that record which blocks have had a copy-
on-write performed. A 16-bit field is reserved in the
inode itself to represent direct blocks. In a 4K indi-
rect block (resp. doubly or triply indirect blocks), the
last eight 32-bit words of the block contain a bitmap
with a bit for every block referenced in that indirect
block. A similar “block stealing” design was chosen
for managing stubs. Figure 2 illustrates our metadata
architecture. The number of direct blocks in an in-

ode has been reduced by one, from twelve to eleven,
for storage of stubs that represent the direct blocks
(i data[11]). Ext3cow reserves additional words
in indirect blocks to be used as pointers to blocks of
stubs. The number of stub block pointers depends on
the file system block size and the encryption method.
In AON encryption, four stub blocks are required to
represent data in a 4K indirect block. Because of
the message expansion and authentication compo-
nents of the randomized-key scheme (cn+1, . . . ,cm, t),
sixteen stub blocks must be reserved; four for the
deletable stubs, and twelve for the expansion and au-
thentication. Only the stub blocks must be securely
overwritten in order to permanently delete data.

Because the extra metadata borrows space from
indirect blocks, the design reduces the maximum file
size. The loss is about 16%. With a 4K block size,
ext3cow represents files up to 9.03× 108 blocks in
comparison to 1.07×109 blocks in ext3. The upcom-
ing adoption of quadruply indirect blocks by ext3
[15] will remove practical file size limitations.

4.2 Version Creation

In our security model, a stub may never be re-written
in place once committed to disk. Violating this pol-
icy places new stub data over old stub data, allowing
the old stub to be recoverable via magnetic force mi-
croscopy.

With secure deletion, I/O drives the creation of
versions. Our architecture mandates a new version
whenever a block and a stub are written to disk. Con-
tinuous versioning, e.g. CVFS [14], meets this re-
quirement, because it creates a new version on ev-
ery write() system call. However, for many users
continuous versioning may incur undesirable storage
overheads, approximately 27%. Most systems create
versions less frequently: as a matter of policy, e.g.
daily, on every file open, etc.; or, explicitly through a
snapshot interface.

Ext3cow will reduce the creation of versions
based on the observation that multiple writes to
the same stub may be aggregated in memory prior
to reaching disk. Ext3cow will experiment with
write-back caching policies that delay writes to stub
blocks, looking to aggregate multiple writes to the
same stub or writes to multiple stubs within the same
disk sector. Stub blocks may be delayed even when

4

the corresponding data blocks are written to disk;
data may be re-written without security exposure.
Further, a small amount of non-volatile, erasable
memory or an erasable journal would be helpful in
delaying disk writes even when the system call spec-
ifies a synchronous write to disk.

5 Discussion
We recognize that there are many issues, beyond
secure deletion, to securing versioning storage sys-
tems. For instance, securing the swap device and
protecting against active memory attacks. While not
comprehensive, secure deletion is an important tech-
nology for the regulatory environment.

We note that our secure deletion technology ap-
plies equally well to content-indexing systems. such
as Venti [10] and LBFS [8]. Content-indexing stores
a corpus of data blocks (for all files) and represents a
file as an assemblage of blocks in the corpus. Thus,
content-indexing shares blocks among files, as do
versioning systems. Content indexing has the same
deletion problems and our technology translates di-
rectly to this important, emerging research area.

We are in the midst of secure deletion re-
search and development, and are currently im-
plementing this scheme in ext3cow, available at
www.ext3cow.com.

This work would not be possible without the hard
work of Adam Stubblefield, Avi Rubin, and Randal
Burns.

References
[1] S. Bauer and N. B. Priyantha. Secure data dele-

tion for Linux file systems. In Proceedings of the
USENIX Security Symposium, 2001.

[2] M. Bellare and C. Namprempre. Authenticated En-
cryption: Relations among notions and analysis of
the generic composition paradigm. In T. Okamoto,
editor, Advances in Cryptology - Asiacrypt 2000
Proceedings, Lecture Notes in Computer Science
Vol. 1976. Springer-Verlag, 2000.

[3] D. Boneh and R. Lipton. A revocable backup sys-
tem. In Proceedings of the 6th USENIX Security
Symposium, pages 91–96, July 1996.

[4] V. Boyko. On the security properties of OAEP
as an all-or-nothing transform. In Proceedings of
CRYPTO ’99. Springer-Verlag, 1999.

[5] S. L. Garfinkel and A. Shelat. Remembrance of data
passed: A study of disk sanitization practices. IEEE
Security and Privacy, 1(1):17–27, 2003.

[6] P. Gutmann. Secure deletion of data from mag-
netic and solid-state memory. In Proceedings of the
6th USENIX Security Symposium, pages 77–90, July
1996.

[7] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang,
and K. Fu. Plutus: Scalable secure file shar-
ing on untrusted storage. In Proceedings of the
USENIX Conference on File and Storage Technolo-
gies (FAST), pages 29–42, March 2003.

[8] A. Muthitacharoen, B. Chen, and D. Mazieres. A
low-bandwidth network file system. In Proceedings
of the Symposium on Operating Systems Principles,
pages 174–187, 2001.

[9] Z. Peterson and R. Burns. Ext3cow: A time-shifting
file system for regulatory compliance. ACM Tran-
scations on Storage, 2005. To appear.

[10] S. Quinlan and S. Dorward. Venti: A new approach
to archival storage. In Proceedings of the 2002 Con-
ference on File And Storage Technologies (FAST),
pages 89–101, January 2002.

[11] R. L. Rivest. All-or-nothing encryption and the
package transform. In Proceedings of the 1997 Fast
Software Encryption Conference, pages 210–218,
1997. Springer Lecture Notes in Computer Science
#1267.

[12] P. Rogaway, M. Ballare, J. Black, and T. Krovet.
OCB: A block-cipher mode of operation for effi-
cient authenticated encryption. In ACM Conference
on Computer and Communications Security, pages
196–205, 2001.

[13] M. Sivathanu, L. Bairavasundatam, A. C. Arpaci-
Dussaeu, and R. H. Arpaci-Dusseau. Life or Death
at Block-Level. In Proceedings of the Sixth Sympo-
sium on Operating Systems Design and Implemen-
tation (OSDI ’04), pages 379–394, December 2004.

[14] C. A. N. Soules, G. R. Goodson, J. D. Strunk, and
G. R. Ganger. Metadata efficiency in versioning file
systems. In Proceedings of the 2nd USENIX Con-
ference on File and Storage Technologies, pages 43–
58, March 2003.

[15] T. Y. Ts’o and S. Tweedie. Planned extensions to the
Linux ext2/ext3 filesystem. In Freenix Track at the
Annual USENIX Technical Conference, pages 235–
243, June 2002.

5

